WWII was full of startling technical feats. Some of these are well-known, such as the Manhattan Project and the various code-breaking initiatives. Others are more obscure, things like the various guided weapon programs. But one project managed to revolutionize a facet of warfare, literally doubling effectiveness, but has languished in obscurity: the proximity fuze.

Any attempt to shoot down aircraft with unguided weapons runs into a simple problem. The sky is big and airplanes are relatively small. At low altitude, this can be countered by a high rate of fire, but small bullets quickly lose velocity, so another solution is needed for targets at high altitude. The traditional solution is to fit the shells fired by heavier guns with time fuzes, set to go off at the point the shell should be nearest to the target. This raises another problem, though. Now, instead of just trying to get a shell to meet the airplane in three dimensions, you have to match it in four or it will either detonate short of the target or go sailing harmlessly by. Even a perfect match wasn't a guarantee of success, as the time fuzes are not perfect and can only be counted on to detonate within 100 yards of the desired point, a variance significantly greater than the lethal radius of the shell. As a result, the US 5"/38 gun required an average of 654 time fuzed shells for each enemy plane shot down in the Pacific. The question on the lips of every gunnery officer was simple. "Why can't they make a fuze that knows when to go off?"
Read more...
Recent Comments